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Sir William Rowan 
Hamilton  

(1805-1865) 
 

Quaternions were 
introduced by 
Irish 
mathematician  
Sir William Rowan 
Hamilton 1843.  
  

 



 

 

Multiplication of quaternions was introduced by Hamilton in 1843 . 
According to the story, he had struggled with the problem of defining 
multiplication of vectors in R3 since 1833, and his family took a great 
interest in this. Each morning at breakfast, his boys would ask ―Well, 
Papa, can you multiply triplets?‖ (meaning vectors in R3) and would 
receive the sad reply 

⊷   ―No I can only add and  subtract them.  
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Then when strolling with his wife by Brougham Bridge in Dublin one 
day, it suddenly occurred to him that all the difficulties would 
disappear if he used quadruples-that is vectors in R4. 

                             Brougham Bridge  
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          Hamilton then promptly carved this equation into the side of 
the nearby Brougham Bridge called.  
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Hamilton also described a quaternion as an ordered quadruple (4-tuple) of 
real numbers, and described the first coordinate as the 'scalar' part, and 
the remaining three as the ‗vector' part. If two quaternions with zero 
scalar parts are multiplied, the scalar part of the product is the negative 
of the dot product of the vector parts, while the vector part of the 
product is the cross product. But the significance of these was still to be 
discovered. Hamilton proceeded to popularize quaternions with several 
books, the last of which, Elements of Quaternions, had 800 pages and 
was published shortly after his death. 
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While the complex numbers are obtained by adding the element i to the 
real numbers which satisfies i2 = -1, the quaternions are obtained by 
adding the elements i, j and k to the real numbers which satisfy the 
following relations. 
 
 
If the multiplication is assumed to be associative (as indeed it is), the 
following relations follow directly: 
 
 
 
 
 
(these are derived in detail below). 
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Every quaternion is a real linear combination of the basis quaternions 1, 
i, j, and k, i.e. every quaternion is uniquely expressible in the form 
a + bi + cj + dk where a, b, c, and d are real numbers. In other words, as 
a vector space over the real numbers, the set H of all quaternions has 
dimension 4, whereas the complex number plane has dimension 2.  
The conjugate  of the quaternion  is defined as 
 

 

 

 

and the norm of q is the non-negative real number defined by 
 
 

http://en.wikipedia.org/wiki/Linear_combination
http://en.wikipedia.org/wiki/Vector_space
http://en.wikipedia.org/wiki/Real_number
http://en.wikipedia.org/wiki/Hamel_dimension
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Quaternions second definition: 
 
 

 

 

where                scalar,                             vector part of p. 
 
 
Addition and products 
 
Quaternion addition  
p + q :  
 
 
 



13 

Like complex numbers, vectors, and matrices, the addition of two 
quaternions is equivalent to summing the elements together: 
 
Addition follows all of the commutativity and associativity rules of real 
and complex number. 
 
Quaternion multiplication  pq :  
 
The usual non-commutative multiplication between two quaternions is 
termed the Product. This product has been described briefly above. 
The complete form is described below: 
 
 
 
Due to the non-commutative nature of the quaternion multiplication, pq 
is not equivalent to qp. 
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Quaternion dot-product  p · q :  
The dot-product is also referred to as the Euclidean inner product, and 
is equivalent to a 4-vector dot product. The inner product is the sum of 
the quantity of each element of p multiplied by each element of q. It is a 
commutative product between quaternions, and returns a scalar quantity. 
 
 
 
The dot-product can be rewritten using the quaternion product: 
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Quaternion reciprocal   p-1 
  
The inverse of a quaternion is defined in a way that p-1p = 1. It is defined 
above in the definition section, under properties (note the difference in 
variable notation). It is formed the same way that the complex inverse is 
found: 
 
 
 
 
The dot product of a quaternion is a scalar. The division of a quaternion by 
a scalar is equivalent to multiplication by the scalar inverse, such that 
each element of the quaternion is divided by the divisor. 
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Quaternion division    p-1q  
The non-commutativity of quaternions allows for two divisions of 
numbers p-1q and qp-1. This means that the notation of q/p cannot be 
used unless p is a scalar only. 
 
Quaternion modulus  | p |  :  
The absolute value of a quaternion is the scalar quantity that determines 
the length of the quaternion from the origin. 
 
 

2222. dcbappppp 
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By using the distance function,                                 the quaternions 
form a metric space (isometric to the usual Euclidean metric on R4) and 
the arithmetic operations are continuous. We also have                      for 
all quaternions p and q. 
 
     There are only two unit sphere which have a group structure. This 
spheres are S1 and S3. 
 
Theorem. The set of unit quaternion      
is a Lie group. 
 
 

http://en.wikipedia.org/wiki/Distance_function
http://en.wikipedia.org/wiki/Distance_function
http://en.wikipedia.org/wiki/Metric_space
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REPRESENTİNG QUATERNİONS BY MATRİCES 

 
There are at least two ways of representing quaternions as matrices, in 
such a way that quaternion addition and multiplication correspond to 
matrix addition and matrix multiplication (i.e., quaternion-matrix 
homomorphisms). One is to use 2×2 complex matrices, and the other is to 
use 4×4 real matrices. 
In the first way, the quaternion p=a + bi + cj + dk  is represented as 
 

                                       
𝑎 + 𝑏𝑖 𝑐 + 𝑑𝑖
−𝑐 + 𝑑𝑖 𝑎 − 𝑏𝑖

  

 

http://en.wikipedia.org/wiki/Matrix_(mathematics)
http://en.wikipedia.org/wiki/Matrix_multiplication
http://en.wikipedia.org/wiki/Homomorphism
http://en.wikipedia.org/wiki/Complex_number
http://en.wikipedia.org/wiki/Real_number
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This representation has several nice properties. 
 
 Complex numbers (c = d = 0) correspond to diagonal matrices.  
 
 The square of the absolute value of a quaternion is the determinant 

of the corresponding matrix.  
 
 The conjugate of a quaternion corresponds to the conjugate 

transpose of the matrix.  
 
 Restricted to unit quaternions, this representation provides the 

isomorphism between S3 and SU(2). The latter group is important in 
quantum mechanics when dealing with spin; see also Pauli matrices. 
 

http://en.wikipedia.org/wiki/Complex_number
http://en.wikipedia.org/wiki/Determinant
http://en.wikipedia.org/wiki/3-sphere
http://en.wikipedia.org/wiki/3-sphere
http://en.wikipedia.org/wiki/Quantum_mechanics
http://en.wikipedia.org/wiki/Spin_(physics)
http://en.wikipedia.org/wiki/Pauli_matrices
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In the second way, the quaternion p=a + bi + cj + dk is represented as 
 
 
 
 
 
 
 
In this representation, the conjugate of a quaternion corresponds to the 
transpose of the matrix. The fourth power of the absolute value of a 
quaternion is the determinant of the corresponding matrix. 
 
 

 

 

http://en.wikipedia.org/wiki/Transpose
http://en.wikipedia.org/wiki/Determinant


21 

QUATERNİON ROTATİON 
 

It is well known that the vector product is related to rotation in space. 
The goal then is to find a formula which expresses rotation in Euclidean 
space E3 using quaternion multiplication, similar to the formula for a 
rotation in E2  using complex multiplication, 
 
 
 
 
where 
 
 
is used for rotation by an angle 𝛼. 

Cwz ,

http://en.wikipedia.org/wiki/Complex_number
http://en.wikipedia.org/wiki/Angle
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ROTATİONS İN  R3 

 

     Let                       be a unit quaternion, and consider the function 
 
 
 
 
where  p−1 is the multiplicative inverse of p and x is a vector, 
considered as a quaternion with zero real part.  
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Furthermore,  Ф  is a R-linear and we have   Ф(x) = x  if and only if x 
and the imaginary part 𝑉𝑝  of  p are collinear (because Ф(x) = x  means   
x p = p x). Hence  Ф  is a rotation whose axis of rotation passes 
through the origin and is given by the vector 𝑉𝑝. 
 
Note that even then p and -p represent the same rotation. 
 
To summarize, a counterclockwise rotation through an angle 𝛼  about 
an axis 𝑥  can be represented 
 
 
 
where 𝑥   is a unit vector. 
 

http://en.wikipedia.org/wiki/Linear_transformation
http://en.wikipedia.org/wiki/Linear_transformation
http://en.wikipedia.org/wiki/Linear_transformation
http://en.wikipedia.org/wiki/Collinear
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A counterclockwise rotation through an angle  𝛼 about an axis 𝑥  in  R3 
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AN EXAMPLE 
 

Let us consider the rotation Ф  around the axis  u = i + j + k, with an 
rotation angle of 120°—i.e., 2π /3 radians. 
 

𝛼 =
2𝜋

3
= 120° 

 
The length of u is  , the half angle is   π/3  ( 60° )  with cosine 1 2  ( cos 60° 

= 0.5 ) and sine 3
2  ( sin 60° = 0.866 ). We are therefore dealing with a 

conjugation by the unit quaternion 
 
 
 

1 3
ˆ ˆ ˆcos sin ,

2 2 2 2

u
q x x x

u

 
    

http://en.wikipedia.org/wiki/Radian
http://en.wikipedia.org/wiki/Cosine
http://en.wikipedia.org/wiki/Sine
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QUATERNİONS VERSUS OTHER REPRESENTATİONS OF  
ROTATİONS 

 
The representation of a rotation as a quaternion (4 numbers) is more 
compact than the representation as an orthogonal matrix (9 
numbers). Furthermore, for a given axis and angle, one can easily 
construct the corresponding quaternion, and conversely, for a given 
quaternion one can easily read off the axis and the angle. Both of 
these are much harder with matrices or Euler angles. 
         
 

http://en.wikipedia.org/wiki/Orthogonal_matrix
http://en.wikipedia.org/wiki/Orthogonal_matrix
http://en.wikipedia.org/wiki/Orthogonal_matrix
http://en.wikipedia.org/wiki/Euler_angle
http://en.wikipedia.org/wiki/Euler_angle
http://en.wikipedia.org/wiki/Euler_angle
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In computer games and other applications, one is often interested in 
―smooth rotations,‖ meaning that the scene should slowly rotate and 
not in a single step. This can be accomplished by choosing a curve such 
as the spherical linear interpolation in the quaternions, with one 
endpoint being the identity transformation 1 (or some other initial 
rotation) and the other being the intended final rotation. This is more 
problematic with other representations of rotations. 

http://en.wikipedia.org/wiki/Computer_game
http://en.wikipedia.org/wiki/Curve
http://en.wikipedia.org/wiki/Slerp
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When composing several rotations on a computer, rounding errors 
necessarily accumulate. A quaternion that‘s slightly off still represents 
a rotation after being normalized—a matrix that‘s slightly off need not 
be orthogonal anymore and therefore is harder to convert back to a 
proper orthogonal matrix. 
 
Since Ф is a linear function, the orthogonal matrix corresponding to a 
rotation by the unit quaternion p = a + bi + cj + dk  (with             ) is 
given by 
 
 
 
 
 
of rotations. 

http://en.wikipedia.org/wiki/Orthogonal
http://en.wikipedia.org/wiki/Orthogonal_matrix
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In ordinary three dimensional space, a coordinate rotation can be 
described by means of Euler angles. It can also be described by means 
of quaternions (see below), an approach which is similar to the use of 
vector calculus. 
 
Another way is to multiply by a matrix M, which will rotate space by an 
angle θ around a unit vector v=(x, y, z), or, alternatively, provides the 
formulas for converting coordinates if the coordinate axes rotate in 
opposite direction: 

http://en.wikipedia.org/wiki/Euler_angle
http://en.wikipedia.org/wiki/Quaternions
http://en.wikipedia.org/wiki/Vector_calculus
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𝑀 𝑣, 𝜃 =

𝑐𝑜𝑠𝜃 + 1 − 𝑐𝑜𝑠𝜃 𝑥2 1 − 𝑐𝑜𝑠𝜃 𝑥𝑦 − 𝑠𝑖𝑛𝜃 𝑧 1 − 𝑐𝑜𝑠𝜃 𝑥𝑧 + 𝑠𝑖𝑛𝜃 𝑦

1 − 𝑐𝑜𝑠𝜃 𝑦𝑥 + 𝑠𝑖𝑛𝜃 𝑧

1 − 𝑐𝑜𝑠𝜃 𝑧𝑥 − 𝑠𝑖𝑛𝜃 𝑦
𝑐𝑜𝑠𝜃 + (1 − 𝑐𝑜𝑠𝜃)𝑦2

1 − 𝑐𝑜𝑠𝜃 𝑧𝑦 + 𝑠𝑖𝑛𝜃 𝑥

1 − 𝑐𝑜𝑠𝜃 𝑦𝑧 − 𝑠𝑖𝑛𝜃𝑥

𝑐𝑜𝑠𝜃 + (1 − 𝑐𝑜𝑠𝜃)𝑧2

 

 

 

or         
𝑀 𝑣, 𝜃 = 𝐼3 + 𝑠𝑖𝑛𝜃 𝑆 + (1 − 𝑐𝑜𝑠𝜃)𝑆2 

 

 

where   

 

 

 

 

 

 

is a skew symmetric matrix. 
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REFLECTİON İN R3 

 
If we consider the linear map: 
 
 
 
 
 
 
where                                is  a unit vector quaternion.  
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Then the matrix representation of this map N : 
 
 
 
 
 
 
 
where                        and the map       is not orientation preserving 
and represent a reflection (as we saw above it is a reflections of w is 
the plane with normal     ). 
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Then,                      . The matrix corresponding to this linear 
transformation (                       )  is reflection matrix. 
 
                         
 
  

( ) .w N w 
3 3: R R 
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Then,                            . The reflection according to the line which     is 
the normal is the same with 180° rotation around     . 
 
 
 
                         
 
 
 

( )w qwq   q
q

2

3

( )

( 2 )

w qwq

I S w Nw
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DUAL NUMBERS AND DUAL QUATERNIONS 

 
A dual number  A   has the form   𝑎 + 𝜀𝑎∗  where  𝑎  and 𝑎∗  are real 

numbers  and   𝜀  is the dual symbol subjected to the rules 

 

𝜀 ≠ 0, 0𝜀 = 𝜀0 = 0, 1𝜀 = 𝜀1 = 𝜀,       𝜀2 = 0. 
 

A dual quaternion Q  is written as 
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The three dual quaternionic units (i, j, and k) are orthogonal unit 
vector with respect to scalar product defined below. i, j, and k 
are identified as an orthogonal triad of unit vectors in Euclidean 
3-space. It is useful, therefore, to define the following terms: 
 
Dual number part of Q: 
 
 
 
Dual vector part of Q: 
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Hamiltonian conjugate of Q: 
 

 
𝑄 = 𝐴0 − 𝐴1𝑖 + 𝐴2j + 𝐴1𝑘 = 𝑆𝑄 − 𝑉𝑄 = 𝑞 + 𝜀𝑞 ∗. 

 
The dual quaternion multiplication is, in general, not commutative. If 
Q  and P  be the two dual quaternions and let  R=QP, then  R  is given 
by 
 
 
 
where  P=B0 + B1 i+ B2 j+ B3 k=p+ 𝜀 p*,  p and p* are real quaternions. 
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Norm of Q: 
 
 
 
 
Reciprocal of Q: 
 
 
 
where    
 
Unit quaternion: 
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In this section, two new operators      and    , called Hamilton‘s 
operators, are defined and its properties are discussed. If      is a  
quaternion, then Hamilton operators       and      are, respectively, 
defined as 
 
 
 
 
 
 
 
and 
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A direct consequence of the above operators is the following identities: 

 

                                                                          

                                                                          , 

                                                                                           

 

                                                                                                  , 

 

 

                                                                                               . 

 

 

where I is a 4x4  identity matrix. Note that the properties of  En 
and Fn (n=1,2,3)  are identical to that of  quaternionic unit i, j, k. 
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Note that the properties of  En and Fn (n=1,2,3) are identical to that 
of  quaternionic unit i, j, k. 
 
In R4, the basis of quaternions  can be given by 
 
 
 
 

                                       ,                                  ,                                 ,                                   . 
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Since       and       are linear in its elements, it follows that 
 
 
  

                                  

  

                                    

  

     

 
We can give         and        operators for dual quaternions. Thus,  
                                                                                       , 

 

 

 

 

 

                                                                                       . 



H


H



H


H
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Using the definitions of      and    ,  the multiplication of the two dual 
quaternions Q and P is given by 
 
       
 
  
Theorem. If       and       are dual quaternions and      is a real number and 

the operators       and        hold: 
 
                                                              . 
 
                                                                  . 

 
 

 

 

 

 

 

 
 
 
 



H


H



H
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                                                                  . 

 

                                                                                    . 

 

                                                             . 

 

                                                                                   . 

 

                             ,                                  . 

 

 

                                                                                                 . 
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Theorem. Matrices generated by operators       and        commute, or             
mathematically this can be stated as  
 
 
 
 
 



H


H
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SCREW OPERATORS 
 

Let      and       be unit dual vectors in         the quaternion product of 
these two dual vectors is given by 
 
   
                                                                                                        (1) 
 
We can rewrite the expression (1) as: 
 
 
                                                                                                       (2) 
 
 
                                                                                                       (3) 
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where 
 

 

 

We have form experession  (3) 
 
 
 
 
 
or 
 
                                                                ,                                      (4) 
 
in equation (4), 
 
 
     

1 cos sinBA S Q      B QA



52 
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RESULT: 
 
In      ,  the left product of a unit vector      by an unit dual 
quaternion      means that line corresponding to      rotating  about                                       
    in the amount of       in positive direction and translation about     
    in the amount of     in positive direction. 
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Special Cases 
 
1) If                             then 

 
 
 

is rotating operator. 
 
2) If                            then 

 
 
 
 

is translation operator. 
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Theorem: A screw operator Q is composed of a rotating operator         
      and  translation operator      . In other words, 
 
 
 
 
Proof: 
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Frobenius‘ Theorem 
 

If A is an associative division algebra over the field of reals 
     then  A is isomporphic to one of      ,     ,    . 
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A theorem due to G. Frobenius shows that a 3-dimensional algebra 
of the type originally sought by Hamilton cannot exist [17, p. 327]. 
However, if we do not require the structure to be an algebra then 
it is possible to define a non-trivial commutative multiplication of 
number triplets. It can be done by using a 3-dimensional subspace 
of the quaternion algebra and identifying number triplets with 
quaternions in this subspace. The 3-space of triplets can be 
considered as a collection of complex planes containing a common 
line, somewhat like a Rolodex file whose cards are the complex 
planes and whose axle is the given line. 
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Frank R. Pfaff became intrigued by this problem of multiplying 
triplets 60 years ago. In June 1939, as a newly graduated 
engineer from the University of Notre Dame with an interest in 
mathematics, He entered the graduate mathematics program at 
the University, quite unaware of the distinction between 
undergraduate mathematics courses for engineers and the "real 
thing". 
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Professor Karl Menger, who was chairman of Notre Dame's 
Mathematics Department, felt that Frank R. Pfaff could rise to 
the challenge, and he recommended that prior to my formal 
enrollment as a graduate student Frank R. Pfaff should read E. 
T. Bell's Men of Mathematics. He later asked him to drive him up 
to the Upper Peninsula of Michigan, where he stayed for two 
months by himself with a full trunkload of well used texts in a 
single-room, sparsely furnished cabin and enjoyed a prolonged 
period of solitary study. During the rather lengthy drive he 
discussed several math topics with him.  
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In one such discussion he referred to Hamilton's work and 
mentioned that no one had ever devised a meaningful 
commutative multiplication for number triplets. This 
observation must have stayed with him subliminally for 55 
years, because shortly after my wife's death the problem of 
finding such a multiplication arose and with such persistence 
that Frank R. Pfaff struggled with it continuously until this 
present paper emerged. 
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Although Frank R. Pfaff passed his courses in the fall semester 
of 1939, his confidence in his ability to complete graduate work 
for a degree was shaken, and Frank R. Pfaff left the University 
of Notre Dame in January 1940 to take a job as an engineer 
with Exxon Corporation. During his early years there Frank R. 
Pfaff became interested in using the newly emerging computer 
technology to apply linear programming and statistics to the 
petroleum industry. This work helped to restore his confidence 
in his ability to learn, apply, and create mathematics. Thus, this 
present endeavor arrives after a hiatus of almost three score 
years. 
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Frank R. Pfaff show how to define a commutative 
multiplication of number triplets using a 3-dimensional 
subspace of the space of quaternions. It turns out that there 
is a unit element, that every non-zero triplet has a unique 
multiplicative inverse, and, therefore, that division is 
possible. Moreover, there are no divisors of zero. However, 
the multiplication does not obey the distributive law so our 
resulting structure is not a linear algebra (much less a 
division algebra). 
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He recall that in the algebra of quaternions an orthonormal basis 
in the underlying vector space is denoted by 1, i, j, and k. The 
quaternion multiplication, X, of these elements is given by Table 1: 
 
 X 1 i j k 

1 1 i j k 

i i -1 k -j 

j j -k -1 i 

k k j -i -1 

         Table 1. Quaternion Multiplication 



65 

 
Using this basis, an arbitrary quaternion can be written as 
 
                                                                                           , 

or, setting  
 

 

as 

 

 

 

The (non-commutative) multiplication of quaternions is then 
defined using Table 1 and the distributive and associative 
laws.  
 

 

 

 

          

1 , , , ,Q x yi zj wk x y z w    

1 (1,0,0,0), (0,1,0,0), (0,0,0,1), (0,0,0,1),i j k   

( , , , ).Q x y z w
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Those quaternions whose fourth component is zero will consider only , 
i.e., quaternions of the form  
 
 
 
The set of all such truncated quatemions forms a 3-dimensional vector 
subspace of the space of quaternions, and it is spanned by the (mutually 
orthogonal) quaternion elements 1, i, and j. Each quadruplet (x, y, z, 0) by 
the corresponding triplet (x, y, z) replace so that 1 = (1, 0, 0),                   
i = (0, 1, 0), and j = (0, 0, 1), and a general truncated quaternion is 
written as 
 

1 0 ( , , ,0).X x yi zj k x y z    

1 .X x yi zj  
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Of course, this subspace is not closed with respect to quaternion 
multiplication. However, they defined a (commutative) multiplication for 
which the subspace of triplets is closed. They next wish to consider the 
set of all planes, in this subspace, containing the x-axis; somewhat like 
the set of all cards in a Rolodex file (except that the entire plane is 
used) with the  x-axis as the axle. They refer to any such plane as a leaf. 
Each leaf is determined by its line of intersection with the (y, z)-plane, 
or, equivalently, by any non-zero vector U in the (y, z)-plane along this 
line. 
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MULTIPLICATION IN A LEAF 
 

Let X=(a,b,c), where b and c are not both zero. Then 
 
                      X=(a,0,0)+(0,b,c)=(a,0,0)+U, 
where U=(0,b,c) is a non-zero vector in the (y,z)-plane. Thus, U 
and therefore, X, determines a unique leaf. 
    A vector Y=(d,e,f)=(d,0,0)+(0,e,f)=(d,0,0)+V, where V=(0,e,f), 
is in the same leaf as X if and only if there is a real number, say 
m, such that V=mU, i.e., such that Y=(d,e,f)=(d,mb,mc). 
Rewriting X and Y as truncated quaternions, 
 
 
 

1 , 1 ,X a bi cj Y d mbi mcj     
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We have 
 
 
  
 
 
Then 
 
  
since the terms in        and        cancel; the product               is a 
truncated quaternion.     
 
 
  

2 2

( 1 ) ( 1 )

( )1 ( ) ( )

.

X Y a bi cj d mbi mcj

ad mb mc am d bi am d cj

bmci j cmbj i

      

      

   

2 2( )1 ( ) ( ) ,X Y ad mb mc am d bi am d cj       

i j j i Z X Y 



70 

Multiplication of triplets in a leaf has the following properties: 
1) The vector                is in the leaf of  X and Y, i.e., each leaf is closed 

with respect to this multiplication. 
2) The multiplication is commutative. 
3) The multiplication is associative and distributive for vectors in the 

same leaf, since this multiplication is a special case of quaternion 
multiplication. 

4) If                      then                                         , where   
     is the euclidean norm of X. The quaternion                        is just the 
     quaternion conjugate of X; it lies in the leaf of X. 
5)  If X is a non-zero vector then                     satisfies    
     so        is the multiplicative inverse of X; it also lies in the leaf of X. 
 

 
 

Z X Y 

( , , )Y a b c  
22 2 2( )1 1X Y a b c X    

2
.X X X

* 1X a bi cj  

21 * /X X X  1 1 1,X X X X    
1X 
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6) There are no divisors of zero since each non-zero triplet has a unique 
inverse. 
7) Finally, for any triplets X and Z  in the same leaf the equation 
    has a unique triplet solution Y in the leaf of X and Z, namely, 
 
We see that as long as we restrict ourselves to a leaf, quaternion 
multiplication of truncated quaternions yields a commutative and 
associative division algebra on the leaf. Since a leaf is 2-dimensional this 
gives a complex structure on each leaf in a natural way [18].     

X Y Z 
1 .Y X Z 
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LINEAR  INTERPOLATION  IN  MINKOWSKI 
SPACE 

 
In computer graphics, spherical linear interpolation (slerp) is 
shorth and for spherical linear interpolation, in the context 
of quaternion interpolation for the purpose of animating 3D 
rotation [Shoemake]. Linear interpolation have been done  on 
sphere  Euclidean  using quaternions. The linear interpolation 
on Loretzian sphere Minkowski space have been done using 
split quaternions. That also yields the shortest possible 
interpolation path between the two split quaternion on the 
unit Lorentzian sphere [5]. 
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Slerp in the plane: a) The interpolation goes from p to p ′ 
across the angle t; b) A step in the interpolation, where        
(h ∈ [0, 1]), q moves from p to p ′.  
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The shapes of interpolation are simulated with MATLAB R2010a: 
a) Quaternion interpolation between the two key frames in 
Euclidean space, there are 50 interpolated frames; b) Velocity 
graph quaternion interpolation.  
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SPLINE  SPLIT  QUATERNION  INTERPOLATION 
 
Spherical spline quaternion interpolation has been done on 
sphere in Euclidean space using quaternions. The spline split 
quaternion interpolation on hyperbolic sphere in Minkowski 
space has been done using split quaternions and metric 
Lorentz. This interpolation curve is called spherical spline split 
quaternion interpolation in Minkowski space (MSquad) [6]. 
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The shapes of interpolation are simulated with MATLAB Programming  
Language. 
a) The interpolation curve between two split quaternion on hyperbolic 
sphere in Minkowski space, there are 50 interpolated frames; b) Inside 
scope; c) Outside scope; d) Inside scope. 
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Split quaternion interpolation between the four key frames on 
hyperbolic sphere; (b) Inner quadrangle interpolation between 
the four key frames on hyperbolic sphere; (c) Combination of 
split quaternion and inner quadrangle on the hyperbolic sphere; 
(d) Inside scope Combination of split quaternion and inner 
quadrangle on the hyperbolic sphere; (e) Smoothing split 
quaternion with using inner quadrangle; (f) Inside scope 
Smoothing split quaternion with using inner quadrangle, (g) 
interpolation curve for MSquad; (h) Inside scope interpolation 
curve for Msquad. 
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Dual Quaternion Involutions and 
Anti-Involutions 

 
An involution or anti-involution is a self-inverse linear 
mapping. Involutions and anti-involutions of dual 
quaternions are shown. Geometric interpretations of real 
quaternion and dual quaternion involutions and anti-
involutions are given. Also, their geometric 
interpretations are given as reflections [14]. 
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Geometry of the involution 𝑓𝑣 𝑞 = −𝑣𝑞 v  and anti-involution       
fν(q) = −νqν, where q = a+μb. The dotted line represents a plane 
perpendicular to ν seen edge-on. (The scalar part of q is invariant 
and not represented in the figure.) 
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Geometry of the transformation 𝑣𝛿𝑣 in  𝑅3. 𝑑𝛿  , 𝑑𝑣 and 
𝑑𝑣𝛿𝑣  represent the lines corresponding to unit pure dual 
quaternions 𝛿, 𝑣, and 𝑣𝛿𝑣 in 𝑅3, respectively. 



87 

 

Quaternion Frenet Frames 
 

The Frenet and parallel-transport frames are reformulate in 
terms of quaternions only. A quaternion frame is a unit-
length four-vector   q = (𝑞0, 𝑞1, 𝑞2, 𝑞3) = 𝑞0, 𝑞   that 
corresponds to exactly one 3D coordinate frame and is 
characterized by the following properties: 
 
 Unit Norm. The components of a unit quaternion obey the 

constraint, 
(𝑞0)

2 + (𝑞1)
2+(𝑞2)

2+(𝑞3)
2=1 

 
    and therefore lie on S3, the three-sphere. 
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 Multiplication rule. Two quaternions q and p obey the 
following multiplication rule, which is isomorphic to 
multiplication in the group SU(2), which is the double 

    covering of the ordinary 3D rotation group SO(3): 
 

𝑞. 𝑝 =

[𝑞. 𝑝]0

[𝑞. 𝑝]1

[𝑞. 𝑝]2

[𝑞. 𝑝]3

=

𝑞0𝑝0 − 𝑞1𝑝1 − 𝑞2𝑝2 − 𝑞3𝑝3 

𝑞0𝑝1 + 𝑝0𝑞1 + 𝑞2𝑝3 − 𝑞3𝑝2 

𝑞0𝑝2 + 𝑝0𝑞2 + 𝑞3𝑝1 − 𝑞1𝑝3 

𝑞0𝑝3 + 𝑝0𝑞3 + 𝑞1𝑝2 − 𝑞2𝑝1 
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 Inverse. The inverse quaternion is de_ned as                                  
                             𝑞 = 𝑞−1 = (𝑞0, −𝑞 ),  
    so that  

                             𝑞 𝑞 = 𝑞𝑞 = 1,  0 .  
 Mapping to 3D rotations. Every possible 3D rotation R (a 

3x3 orthogonal matrix) can be constructed from either of 
two related quaternions, q = (𝑞0, 𝑞1, 𝑞2, 𝑞3)  or 
                  −q = (−𝑞0, −𝑞1, −𝑞2, −𝑞3),  using the 
transformation law: 

 

[𝑞. 𝑉. 𝑞 ]𝑖=  𝑅𝑖𝑗

3

𝑗=1

𝑉𝑗 
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where, with   v = 0, 𝑉   a pure 3-vector, the quadratic formula  
of   𝑅𝑖𝑗 ; 
 

𝑅 =

𝑞0
2 + 𝑞1

2 − 𝑞2
2 − 𝑞3

2 2𝑞1𝑞2 − 2𝑞0𝑞3 2𝑞1𝑞3 + 2𝑞0𝑞2

2𝑞1𝑞2 +2𝑞0 𝑞3 𝑞0
2 − 𝑞1

2 + 𝑞2
2 − 𝑞3

2 2𝑞2𝑞3 − 2𝑞0𝑞1

2𝑞1𝑞3 − 2𝑞0𝑞2 2𝑞2𝑞3 + 2𝑞0𝑞1 𝑞0
2 − 𝑞1

2 − 𝑞2
2 + 𝑞3

2

 

 

[16]. 
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   A non rotating quaternionic frame is obtained as shown above. 
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Canal Surfaces with Quaternions 
 

Quaternions are more usable than three Euler angles in the 
three dimensional Euclidean space. Thus, many laws in 
different fields can be given by the quaternions. Canal 
surfaces and tube surfaces can be obtained by the 
quaternion product and by the matrix representation. Also, 
the equation of canal surface given by the different frames 
of its spine curve can be obtained by the same unit 
quaternion. In addition, these surfaces are obtained by the 
homothetic motion [15]. 
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AN EXAMPLE 

 

For unit speed curve  𝛼 = (
𝑡

2
 , 𝑠𝑖𝑛

3𝑡

2
, 𝑐𝑜𝑠

3𝑡

2
),  the Frenet frame 

vectors can be given as  
 

𝑇 𝑡 = (
1

2
 , 

3

2
 cos

3𝑡

2
, -

3

2
 𝑠𝑖𝑛

3𝑡

2
), 

𝑁 𝑡 = (0, -sin
3𝑡

2
, - 𝑐𝑜𝑠

3𝑡

2
), 

𝐵 𝑡 = (−
3

2
, 
1

2
 cos

3𝑡

2
, -

1

2
 𝑠𝑖𝑛

3𝑡

2
). 

  
Then, for the unit quaternion 𝑞 𝑡, 𝜃 = 𝑐𝑜𝑠𝜃 + 𝑠𝑖𝑛𝜃 𝑇 𝑡 ,  the matrix 
representation M of 𝜙 as 
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2 2

2 2 2 2

1 3 1 3 3 1 3
cos sin 3 sin (sin cos sin cos ) 3 sin (cos cos sin sin )

2 2 2 2 2 2 2

1 3 3 3 3 1 3 3 3 3 3
3 sin ( sin cos sin cos ) cos sin ( cos sin ) sin ( sin sin cos cos )

2 2 2 4 2 4 4 2 2 2 2

1 3 3
3 sin ( sin sin cos cos ) s

2 2 2

t t t t

t t t t t t

t t

       

       

  

  

     

  2 2 23 3 3 3 3 3 3 1
in (cos sin sin cos ) cos sin ( sin cos )

2 2 2 4 2 4 2 4

t t t t
    

 
 
 
 
 
 
 

    
  

( , ) ( ) ( )

( )

3 3 3 1 3
sin 2 ,sin cos 2 sin sin 2 cos ,

2 2 2 2 2 2

3 3 1 3
cos cos 2 cos sin 2 sin ,

2 2 2 2

3 3 1 3
cos cos 2 cos sin 2 sin

2 2 2 2

X t t rMN t

t rqxN

t t t t
r r r

t t t
r r

t t t
r r
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For r= 1 

2 , we can draw Fig. 1. 

                              Tube Surface   ( , )X t 
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Curvature of Almost Split Quaternion Kaehler 

Manifolds 
 

Quaternion Kaehler Manifolds are frequent studied a 
subject. It is important study some characterizations of 
Riemann curvature and Ricci curvature on quaternion 
Kaehler manifolds. Split quaternions are a new developing 
topic. Inoguchi, J. studied on this topic. These 
characterizations of Riemann curvature and Ricci 
curvature on split quaternion Kaehler manifolds [10]. 
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From Golden Spirals to Constant Slope Surfaces 
 
All constant slope surfaces in the Euclidean 3-space are 
found. Namely,  those surfaces for which the position 
vector of a point of the surface makes constant angle 
with the normal at the surface in that point. These 
surfaces could be thought as then bi-dimensional 
analogue of the generalized helices [7]. 
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                                              AN EXAMPLE 
Let us point more attention to this picture (but not necessary 
with         ), when                             . Then, 
 
 
for all v and consequently the slope surface is parametrized 
by 
 
 
 
 
 

(v) (cosv,sinv,0)f 

r(u, v) sin (cos( (u))cosv,cos( (u))sinv,sin( (u))),u    

5


 

(v) x (v) (0,0,1)f f  

Q sin (cos sin ),

Qx r(u, v).

u f

f
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        For          ,                                            
5


  (v) (cosv,sinv,0)f 



100 

 
On the quaternionic Mannheim curves of Aw(k)-type in 

Euclidean space E3 
 
 

The curvature conditions of Aw(k)-type  (1≤ k ≤ 3) 
quaternionic curves in Euclidean space E3  and  quaternionic 
Mannheim curves  α:I →Q  with k ≠ 0 and r ≠ 0 are shown . 
Besides,  quaternionic Mannheim curves are Aw(2) -type 
and Aw (3)-type quaternionic curves in E3. But, there is no 
such a Mannheim curve of Aw(1) –type [13]. 
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Homothetic motions at E4 

 

A Hamilton motion has been defined in four-dimensional 
Euclidean space E4, and it is shown that this is a homothetic 
motion. Furthermore, it has been found that the Hamilton 
motion defined by a regular curve of order r has only one 
acceleration centre of order (r−1) at every t-instant [12]. 
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HOMOTHETIC MOTIONS AT E8 
 WITH CAYLEY NUMBERS 

 
A matrix which is similar to Hamilton operators has been 
developed for Cayley numbers in eight dimensional Euclidean 
space E8 and a new motion has been defined by this matrix. 
It is shown that this is a homothetic motion. Furthermore, it 
has been found that the motion defined by 
regular curve of order r has only one acceleration centre of 
order (r - 1) at every instant [11]. 
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Circular Surfaces with Split Quaternionic 
Representations in Minkowski 3-space 

 

Circular surfaces are smooth one-parameter families of 
circles. Three main purposes about circular surfaces and 
roller coaster surfaces are defined as circular surfaces 
whose generating circles are lines of curvature. The first 
one is to reconstruct equations of spacelike circular 
surfaces and spacelike roller coaster surfaces by using unit 
split quaternions and homothetic motions.  
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The second one is to parametrize timelike circular 
surfaces and give some geometric properties such as 
striction curves, singularities, Gaussian and mean 
curvatures.  Furthermore, the conditions for timelike 
roller coaster surfaces to be flat or minimal surfaces 
are obtained. The last one is to express split 
quaternionic and matrix representations of timelike 
circular surfaces and timelike roller coaster surfaces. 
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AN EXAMPLE 
Given a curve  
 
   
 
it is easy to show that 
 
 
 
 

5 4 3 4 3
( ) ( , cos( ), sin( )),

12 9 4 9 4

s s s
s 

1

2

3

5 4 3 4 3
( ) ( ) ( , sin( ), cos( ))

3 3 4 3 4

3 3
( ) ( ) (0, cos( ), sin( ))

4 4

4 5 3 5 3
( ) ( ) ( , sin( ), cos( ))

3 3 4 3 4

s s
a s e s

s s
a s n s

s s
a s b s
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where s is the arc-length parameter of           . Using the 
timelike unit split quaternion                              we have 
 
 
 

 

 

For r = 1 and r = s/2, the spacelike circular surfaces are 
illustrated. 

1( )a s e

cos sin ,eq e  

( , , , ) ( , ) ( ) ( ) ( , ) ( ).n b r eC s s r s q s n s     
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      The spacelike circular surfaces with r = 1 and 
      r = s/2. a. The circular surface             . b. The circular 
      surface            . 

( , , ,1)e nC 

( , , , /2)e n sC 
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A New Representation of Canal Surfaces with Split Quaternions 

in Minkowski 3-Space 
 

Canal surfaces determined by spherical indicatrices of any 
spatial curve in Minkowski 3-space by means of timelike split 
quaternions. Moreover, using orthogonal matrices corresponding 
to these quaternions, the canal surfaces are obtained as 
homotetic motions. Then, we investigate a relationship between 
the canal surfaces and unit split quaternions [8]. 
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AN EXAMPLE 
Given a unit-speed spacelike curve 
 
 
 
 
With spacelike binormal vector, the alternative moving 
frame vectors are given by 
 
 
 
 
 
 

4 1 2 1 2
( ) ( sin 5 , cos8 cos2 , sin8 sin 2 )

15 24 3 24 3
s s s s s s    

5 4 4
( ) ( , sin 3 , cos3 ),

3 3 3

( ) (0, cos3 ,sin 3 ),

4 5 5
( ) ( , sin 3 , cos3 ).

3 3 3

N s s s

C s s s

W s s s
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Then, the tangent, principal normal and binormal 
indicatrices of the curve α are obtained as follows: 
 
 

3

4 1 4 1 4
( ( )) ( cos5 , sin8 sin 2 , cos8 cos 2 ),

3 3 3 3 3

5 4 4
( ( )) ( , sin 3 , cos3 ),

3 3 3

4 1
( ( )) ( sin 5 , ( 4cos 2 cos8 ),

3 3

8cos
(6sin 3sin3 sin5 )).

3

T

N

B

T s s s s s s

N s s s

B s s s s

s
s s s
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For the unit timelike split quaternion  
 
 
with timelike vector part, the parametric equation of 
the canal surface              constructed by the tangent 
indicatrix T of the curve α with the admission  
r(s) = sins is found as follows; 
 
 

( , ) cosh sinhNq s N   

( , )TP s 

2

2 2

2 2

4 5 4
( , ) ( cos5 sin 2 sin sin ,

3 6 3

1 4 2 5
sin8 sin 2 sin 2 sin3 sin cos3 cos sin sin3 sin ,

3 3 3 3

1 4 2 5
cos8 cos 2 sin 2 cos3 sin sin3 cos sin cos3 sin ).

3 3 3 3

TP s s s s

s s s s s s s s

s s s s s s s s
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The canal surface              constructed by the 

tangent indicatrix T of α 
( , )TP s 
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Then, taking r = 1 and r = θ, respectively, the equations of the 
tubular and generalized tubular surfaces ΛT (s, θ) and ΩT (s, θ) 
generated by the tangent indicatrix T are given by 
 
 
 

4 4
( , ) ( cos5 sin ,

3 3

1 4 5
sin8 sin 2 cos3 cos sin3 sin ,

3 3 3

1 4 5
cos8 cos 2 sin3 cos cos3 sin ),

3 3 3

T s s

s s s s

s s s s
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4 4
( , ) ( cos5 sin ,

3 3

1 4 5
sin8 sin 2 cos3 cos sin3 sin ,

3 3 3

1 4 5
cos8 cos 2 sin3 cos cos3 sin ).

3 3 3

T s s

s s s s

s s s s
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(A). The tubular surface             constructed by T . 
(B). The generalized tubular surface             
constructed by T 

( , )T s 

( , )T s 
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